Am avut 371687 vizite de la lansarea siteului.




Inapoi        Inainte       Cuprins

Object details

A question that often comes up in seminars is, “How big is an object, and what does it look like?” The answer is “about what you expect from a C struct.” In fact, the code the C compiler produces for a C struct (with no C++ adornments) will usually look exactly the same as the code produced by a C++ compiler. This is reassuring to those C programmers who depend on the details of size and layout in their code, and for some reason directly access structure bytes instead of using identifiers (relying on a particular size and layout for a structure is a nonportable activity).

The size of a struct is the combined size of all of its members. Sometimes when the compiler lays out a struct, it adds extra bytes to make the boundaries come out neatly – this may increase execution efficiency. In Chapter 15, you’ll see how in some cases “secret” pointers are added to the structure, but you don’t need to worry about that right now.

You can determine the size of a struct using the sizeof operator. Here’s a small example:

//: C04:Sizeof.cpp
// Sizes of structs
#include "CLib.h"
#include "CppLib.h"
#include <iostream>
using namespace std;

struct A {
  int i[100];
};

struct B {
  void f();
};

void B::f() {}

int main() {
  cout << "sizeof struct A = " << sizeof(A)
       << " bytes" << endl;
  cout << "sizeof struct B = " << sizeof(B)
       << " bytes" << endl;
  cout << "sizeof CStash in C = " 
       << sizeof(CStash) << " bytes" << endl;
  cout << "sizeof Stash in C++ = " 
       << sizeof(Stash) << " bytes" << endl;
} ///:~

On my machine (your results may vary) the first print statement produces 200 because each int occupies two bytes. struct B is something of an anomaly because it is a struct with no data members. In C, this is illegal, but in C++ we need the option of creating a struct whose sole task is to scope function names, so it is allowed. Still, the result produced by the second print statement is a somewhat surprising nonzero value. In early versions of the language, the size was zero, but an awkward situation arises when you create such objects: They have the same address as the object created directly after them, and so are not distinct. One of the fundamental rules of objects is that each object must have a unique address, so structures with no data members will always have some minimum nonzero size.

The last two sizeof statements show you that the size of the structure in C++ is the same as the size of the equivalent version in C. C++ tries not to add any unnecessary overhead.

Header file etiquette

When you create a struct containing member functions, you are creating a new data type. In general, you want this type to be easily accessible to yourself and others. In addition, you want to separate the interface (the declaration) from the implementation (the definition of the member functions) so the implementation can be changed without forcing a re-compile of the entire system. You achieve this end by putting the declaration for your new type in a header file.

When I first learned to program in C, the header file was a mystery to me. Many C books don’t seem to emphasize it, and the compiler didn’t enforce function declarations, so it seemed optional most of the time, except when structures were declared. In C++ the use of header files becomes crystal clear. They are virtually mandatory for easy program development, and you put very specific information in them: declarations. The header file tells the compiler what is available in your library. You can use the library even if you only possess the header file along with the object file or library file; you don’t need the source code for the cpp file. The header file is where the interface specification is stored.

Although it is not enforced by the compiler, the best approach to building large projects in C is to use libraries; collect associated functions into the same object module or library, and use a header file to hold all the declarations for the functions. It is de rigueur in C++; you could throw any function into a C library, but the C++ abstract data type determines the functions that are associated by dint of their common access to the data in a struct. Any member function must be declared in the struct declaration; you cannot put it elsewhere. The use of function libraries was encouraged in C and institutionalized in C++.

Importance of header files

When using a function from a library, C allows you the option of ignoring the header file and simply declaring the function by hand. In the past, people would sometimes do this to speed up the compiler just a bit by avoiding the task of opening and including the file (this is usually not an issue with modern compilers). For example, here’s an extremely lazy declaration of the C function printf( ) (from <stdio.h>):

printf(...);

The ellipses specify a variable argument list[34], which says: printf( ) has some arguments, each of which has a type, but ignore that. Just take whatever arguments you see and accept them. By using this kind of declaration, you suspend all error checking on the arguments.

This practice can cause subtle problems. If you declare functions by hand, in one file you may make a mistake. Since the compiler sees only your hand-declaration in that file, it may be able to adapt to your mistake. The program will then link correctly, but the use of the function in that one file will be faulty. This is a tough error to find, and is easily avoided by using a header file.

If you place all your function declarations in a header file, and include that header everywhere you use the function and where you define the function, you ensure a consistent declaration across the whole system. You also ensure that the declaration and the definition match by including the header in the definition file.

If a struct is declared in a header file in C++, you must include the header file everywhere a struct is used and where struct member functions are defined. The C++ compiler will give an error message if you try to call a regular function, or to call or define a member function, without declaring it first. By enforcing the proper use of header files, the language ensures consistency in libraries, and reduces bugs by forcing the same interface to be used everywhere.

The header is a contract between you and the user of your library. The contract describes your data structures, and states the arguments and return values for the function calls. It says, “Here’s what my library does.” The user needs some of this information to develop the application and the compiler needs all of it to generate proper code. The user of the struct simply includes the header file, creates objects (instances) of that struct, and links in the object module or library (i.e.: the compiled code).

The compiler enforces the contract by requiring you to declare all structures and functions before they are used and, in the case of member functions, before they are defined. Thus, you’re forced to put the declarations in the header and to include the header in the file where the member functions are defined and the file(s) where they are used. Because a single header file describing your library is included throughout the system, the compiler can ensure consistency and prevent errors.

There are certain issues that you must be aware of in order to organize your code properly and write effective header files. The first issue concerns what you can put into header files. The basic rule is “only declarations,” that is, only information to the compiler but nothing that allocates storage by generating code or creating variables. This is because the header file will typically be included in several translation units in a project, and if storage for one identifier is allocated in more than one place, the linker will come up with a multiple definition error (this is C++’s one definition rule: You can declare things as many times as you want, but there can be only one actual definition for each thing).

This rule isn’t completely hard and fast. If you define a variable that is “file static” (has visibility only within a file) inside a header file, there will be multiple instances of that data across the project, but the linker won’t have a collision[35]. Basically, you don’t want to do anything in the header file that will cause an ambiguity at link time.


The multiple-declaration problem

The second header-file issue is this: when you put a struct declaration in a header file, it is possible for the file to be included more than once in a complicated program. Iostreams are a good example. Any time a struct does I/O it may include one of the iostream headers. If the cpp file you are working on uses more than one kind of struct (typically including a header file for each one), you run the risk of including the <iostream> header more than once and re-declaring iostreams.

The compiler considers the redeclaration of a structure (this includes both structs and classes) to be an error, since it would otherwise allow you to use the same name for different types. To prevent this error when multiple header files are included, you need to build some intelligence into your header files using the preprocessor (Standard C++ header files like <iostream> already have this “intelligence”).

Both C and C++ allow you to redeclare a function, as long as the two declarations match, but neither will allow the redeclaration of a structure. In C++ this rule is especially important because if the compiler allowed you to redeclare a structure and the two declarations differed, which one would it use?

The problem of redeclaration comes up quite a bit in C++ because each data type (structure with functions) generally has its own header file, and you have to include one header in another if you want to create another data type that uses the first one. In any cpp file in your project, it’s likely that you’ll include several files that include the same header file. During a single compilation, the compiler can see the same header file several times. Unless you do something about it, the compiler will see the redeclaration of your structure and report a compile-time error. To solve the problem, you need to know a bit more about the preprocessor.

The preprocessor directives
#define, #ifdef, and #endif

The preprocessor directive #define can be used to create compile-time flags. You have two choices: you can simply tell the preprocessor that the flag is defined, without specifying a value:

#define FLAG

or you can give it a value (which is the typical C way to define a constant):

#define PI 3.14159

In either case, the label can now be tested by the preprocessor to see if it has been defined:

#ifdef FLAG

This will yield a true result, and the code following the #ifdef will be included in the package sent to the compiler. This inclusion stops when the preprocessor encounters the statement

#endif

or

#endif // FLAG

Any non-comment after the #endif on the same line is illegal, even though some compilers may accept it. The #ifdef/#endif pairs may be nested within each other.

The complement of #define is #undef (short for “un-define”), which will make an #ifdef statement using the same variable yield a false result. #undef will also cause the preprocessor to stop using a macro. The complement of #ifdef is #ifndef, which will yield a true if the label has not been defined (this is the one we will use in header files).

There are other useful features in the C preprocessor. You should check your local documentation for the full set.

A standard for header files

In each header file that contains a structure, you should first check to see if this header has already been included in this particular cpp file. You do this by testing a preprocessor flag. If the flag isn’t set, the file wasn’t included and you should set the flag (so the structure can’t get re-declared) and declare the structure. If the flag was set then that type has already been declared so you should just ignore the code that declares it. Here’s how the header file should look:

#ifndef HEADER_FLAG
#define HEADER_FLAG
// Type declaration here...
#endif // HEADER_FLAG

As you can see, the first time the header file is included, the contents of the header file (including your type declaration) will be included by the preprocessor. All the subsequent times it is included – in a single compilation unit – the type declaration will be ignored. The name HEADER_FLAG can be any unique name, but a reliable standard to follow is to capitalize the name of the header file and replace periods with underscores (leading underscores, however, are reserved for system names). Here’s an example:

//: C04:Simple.h
// Simple header that prevents re-definition
#ifndef SIMPLE_H
#define SIMPLE_H

struct Simple {
  int i,j,k;
  initialize() { i = j = k = 0; }
};
#endif // SIMPLE_H ///:~

Although the SIMPLE_H after the #endif is commented out and thus ignored by the preprocessor, it is useful for documentation.

These preprocessor statements that prevent multiple inclusion are often referred to as include guards.

Namespaces in headers

You’ll notice that using directives are present in nearly all the cpp files in this book, usually in the form:

using namespace std;

Since std is the namespace that surrounds the entire Standard C++ library, this particular using directive allows the names in the Standard C++ library to be used without qualification. However, you’ll virtually never see a using directive in a header file (at least, not outside of a scope). The reason is that the using directive eliminates the protection of that particular namespace, and the effect lasts until the end of the current compilation unit. If you put a using directive (outside of a scope) in a header file, it means that this loss of “namespace protection” will occur with any file that includes this header, which often means other header files. Thus, if you start putting using directives in header files, it’s very easy to end up “turning off” namespaces practically everywhere, and thereby neutralizing the beneficial effects of namespaces.

In short: don’t put using directives in header files.

Using headers in projects

When building a project in C++, you’ll usually create it by bringing together a lot of different types (data structures with associated functions). You’ll usually put the declaration for each type or group of associated types in a separate header file, then define the functions for that type in a translation unit. When you use that type, you must include the header file to perform the declarations properly.

Sometimes that pattern will be followed in this book, but more often the examples will be very small, so everything – the structure declarations, function definitions, and the main( ) function – may appear in a single file. However, keep in mind that you’ll want to use separate files and header files in practice.

Nested structures

The convenience of taking data and function names out of the global name space extends to structures. You can nest a structure within another structure, and therefore keep associated elements together. The declaration syntax is what you would expect, as you can see in the following structure, which implements a push-down stack as a simple linked list so it “never” runs out of memory:

//: C04:Stack.h
// Nested struct in linked list
#ifndef STACK_H
#define STACK_H

struct Stack {
  struct Link {
    void* data;
    Link* next;
    void initialize(void* dat, Link* nxt);
  }* head;
  void initialize();
  void push(void* dat);
  void* peek();
  void* pop();
  void cleanup();
};
#endif // STACK_H ///:~

The nested struct is called Link, and it contains a pointer to the next Link in the list and a pointer to the data stored in the Link. If the next pointer is zero, it means you’re at the end of the list.

Notice that the head pointer is defined right after the declaration for struct Link, instead of a separate definition Link* head. This is a syntax that came from C, but it emphasizes the importance of the semicolon after the structure declaration; the semicolon indicates the end of the comma-separated list of definitions of that structure type. (Usually the list is empty.)

The nested structure has its own initialize( ) function, like all the structures presented so far, to ensure proper initialization. Stack has both an initialize( ) and cleanup( ) function, as well as push( ), which takes a pointer to the data you wish to store (it assumes this has been allocated on the heap), and pop( ), which returns the data pointer from the top of the Stack and removes the top element. (When you pop( ) an element, you are responsible for destroying the object pointed to by the data.) The peek( ) function also returns the data pointer from the top element, but it leaves the top element on the Stack.

Here are the definitions for the member functions:

//: C04:Stack.cpp {O}
// Linked list with nesting
#include "Stack.h"
#include "../require.h"
using namespace std;

void 
Stack::Link::initialize(void* dat, Link* nxt) {
  data = dat;
  next = nxt;
}

void Stack::initialize() { head = 0; }

void Stack::push(void* dat) {
  Link* newLink = new Link;
  newLink->initialize(dat, head);
  head = newLink;
}

void* Stack::peek() { 
  require(head != 0, "Stack empty");
  return head->data; 
}

void* Stack::pop() {
  if(head == 0) return 0;
  void* result = head->data;
  Link* oldHead = head;
  head = head->next;
  delete oldHead;
  return result;
}

void Stack::cleanup() {
  require(head == 0, "Stack not empty");
} ///:~

The first definition is particularly interesting because it shows you how to define a member of a nested structure. You simply use an additional level of scope resolution to specify the name of the enclosing struct. Stack::Link::initialize( ) takes the arguments and assigns them to its members.

Stack::initialize( ) sets head to zero, so the object knows it has an empty list.

Stack::push( ) takes the argument, which is a pointer to the variable you want to keep track of, and pushes it on the Stack. First, it uses new to allocate storage for the Link it will insert at the top. Then it calls Link’s initialize( ) function to assign the appropriate values to the members of the Link. Notice that the next pointer is assigned to the current head; then head is assigned to the new Link pointer. This effectively pushes the Link in at the top of the list.

Stack::pop( ) captures the data pointer at the current top of the Stack; then it moves the head pointer down and deletes the old top of the Stack, finally returning the captured pointer. When pop( ) removes the last element, then head again becomes zero, meaning the Stack is empty.

Stack::cleanup( ) doesn’t actually do any cleanup. Instead, it establishes a firm policy that “you (the client programmer using this Stack object) are responsible for popping all the elements off this Stack and deleting them.” The require( ) is used to indicate that a programming error has occurred if the Stack is not empty.

Why couldn’t the Stack destructor be responsible for all the objects that the client programmer didn’t pop( )? The problem is that the Stack is holding void pointers, and you’ll learn in Chapter 13 that calling delete for a void* doesn’t clean things up properly. The subject of “who’s responsible for the memory” is not even that simple, as we’ll see in later chapters.

Here’s an example to test the Stack:

//: C04:StackTest.cpp
//{L} Stack
//{T} StackTest.cpp
// Test of nested linked list
#include "Stack.h"
#include "../require.h"
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

int main(int argc, char* argv[]) {
  requireArgs(argc, 1); // File name is argument
  ifstream in(argv[1]);
  assure(in, argv[1]);
  Stack textlines;
  textlines.initialize();
  string line;
  // Read file and store lines in the Stack:
  while(getline(in, line))
    textlines.push(new string(line));
  // Pop the lines from the Stack and print them:
  string* s;
  while((s = (string*)textlines.pop()) != 0) {
    cout << *s << endl;
    delete s; 
  }
  textlines.cleanup();
} ///:~

This is similar to the earlier example, but it pushes lines from a file (as string pointers) on the Stack and then pops them off, which results in the file being printed out in reverse order. Note that the pop( ) member function returns a void* and this must be cast back to a string* before it can be used. To print the string, the pointer is dereferenced.

As textlines is being filled, the contents of line is “cloned” for each push( ) by making a new string(line). The value returned from the new-expression is a pointer to the new string that was created and that copied the information from line. If you had simply passed the address of line to push( ), you would end up with a Stack filled with identical addresses, all pointing to line. You’ll learn more about this “cloning” process later in the book.

The file name is taken from the command line. To guarantee that there are enough arguments on the command line, you see a second function used from the require.h header file: requireArgs( ), which compares argc to the desired number of arguments and prints an appropriate error message and exits the program if there aren’t enough arguments.

Global scope resolution

The scope resolution operator gets you out of situations in which the name the compiler chooses by default (the “nearest” name) isn’t what you want. For example, suppose you have a structure with a local identifier a, and you want to select a global identifier a from inside a member function. The compiler would default to choosing the local one, so you must tell it to do otherwise. When you want to specify a global name using scope resolution, you use the operator with nothing in front of it. Here’s an example that shows global scope resolution for both a variable and a function:

//: C04:Scoperes.cpp
// Global scope resolution
int a;
void f() {}

struct S {
  int a;
  void f();
};

void S::f() {
  ::f();  // Would be recursive otherwise!
  ::a++;  // Select the global a
  a--;    // The a at struct scope
}
int main() { S s; f(); } ///:~

Without scope resolution in S::f( ), the compiler would default to selecting the member versions of f( ) and a.

Summary

In this chapter, you’ve learned the fundamental “twist” of C++: that you can place functions inside of structures. This new type of structure is called an abstract data type, and variables you create using this structure are called objects, or instances, of that type. Calling a member function for an object is called sending a message to that object. The primary action in object-oriented programming is sending messages to objects.

Although packaging data and functions together is a significant benefit for code organization and makes library use easier because it prevents name clashes by hiding the names, there’s a lot more you can do to make programming safer in C++. In the next chapter, you’ll learn how to protect some members of a struct so that only you can manipulate them. This establishes a clear boundary between what the user of the structure can change and what only the programmer may change.

Exercises

Solutions to selected exercises can be found in the electronic document The Thinking in C++ Annotated Solution Guide, available for a small fee from http://www.BruceEckel.com.

  1. In the Standard C library, the function puts( ) prints a char array to the console (so you can say puts("hello")). Write a C program that uses puts( ) but does not include <stdio.h> or otherwise declare the function. Compile this program with your C compiler. (Some C++ compilers are not distinct from their C compilers; in this case you may need to discover a command-line flag that forces a C compilation.) Now compile it with the C++ compiler and note the difference.
  2. Create a struct declaration with a single member function, then create a definition for that member function. Create an object of your new data type, and call the member function.
  3. Change your solution to Exercise 2 so the struct is declared in a properly “guarded” header file, with the definition in one cpp file and your main( ) in another.
  4. Create a struct with a single int data member, and two global functions, each of which takes a pointer to that struct. The first function has a second int argument and sets the struct’s int to the argument value, the second displays the int from the struct. Test the functions.
  5. Repeat Exercise 4 but move the functions so they are member functions of the struct, and test again.
  6. Create a class that (redundantly) performs data member selection and a member function call using the this keyword (which refers to the address of the current object).
  7. Make a Stash that holds doubles. Fill it with 25 double values, then print them out to the console.
  8. Repeat Exercise 7 with Stack.
  9. Create a file containing a function f( ) that takes an int argument and prints it to the console using the printf( ) function in <stdio.h> by saying: printf(“%d\n”, i) in which i is the int you wish to print. Create a separate file containing main( ), and in this file declare f( ) to take a float argument. Call f( ) from inside main( ). Try to compile and link your program with the C++ compiler and see what happens. Now compile and link the program using the C compiler, and see what happens when it runs. Explain the behavior.
  10. Find out how to produce assembly language from your C and C++ compilers. Write a function in C and a struct with a single member function in C++. Produce assembly language from each and find the function names that are produced by your C function and your C++ member function, so you can see what sort of name decoration occurs inside the compiler.
  11. Write a program with conditionally-compiled code in main( ), so that when a preprocessor value is defined one message is printed, but when it is not defined another message is printed. Compile this code experimenting with a #define within the program, then discover the way your compiler takes preprocessor definitions on the command line and experiment with that.
  12. Write a program that uses assert( ) with an argument that is always false (zero) to see what happens when you run it. Now compile it with #define NDEBUG and run it again to see the difference.
  13. Create an abstract data type that represents a videotape in a video rental store. Try to consider all the data and operations that may be necessary for the Video type to work well within the video rental management system. Include a print( ) member function that displays information about the Video.
  14. Create a Stack object to hold the Video objects from Exercise 13. Create several Video objects, store them in the Stack, then display them using Video::print( ).
  15. Write a program that prints out all the sizes for the fundamental data types on your computer using sizeof.
  16. Modify Stash to use a vector<char> as its underlying data structure.
  17. Dynamically create pieces of storage of the following types, using new: int, long, an array of 100 chars, an array of 100 floats. Print the addresses of these and then free the storage using delete.
  18. Write a function that takes a char* argument. Using new, dynamically allocate an array of char that is the size of the char array that’s passed to the function. Using array indexing, copy the characters from the argument to the dynamically allocated array (don’t forget the null terminator) and return the pointer to the copy. In your main( ), test the function by passing a static quoted character array, then take the result of that and pass it back into the function. Print both strings and both pointers so you can see they are different storage. Using delete, clean up all the dynamic storage.
  19. Show an example of a structure declared within another structure (a nested structure). Declare data members in both structs, and declare and define member functions in both structs. Write a main( ) that tests your new types.
  20. How big is a structure? Write a piece of code that prints the size of various structures. Create structures that have data members only and ones that have data members and function members. Then create a structure that has no members at all. Print out the sizes of all these. Explain the reason for the result of the structure with no data members at all.
  21. C++ automatically creates the equivalent of a typedef for structs, as you’ve seen in this chapter. It also does this for enumerations and unions. Write a small program that demonstrates this.
  22. Create a Stack that holds Stashes. Each Stash will hold five lines from an input file. Create the Stashes using new. Read a file into your Stack, then reprint it in its original form by extracting it from the Stack.
  23. Modify Exercise 22 so that you create a struct that encapsulates the Stack of Stashes. The user should only add and get lines via member functions, but under the covers the struct happens to use a Stack of Stashes.
  24. Create a struct that holds an int and a pointer to another instance of the same struct. Write a function that takes the address of one of these structs and an int indicating the length of the list you want created. This function will make a whole chain of these structs (a linked list), starting from the argument (the head of the list), with each one pointing to the next. Make the new structs using new, and put the count (which object number this is) in the int. In the last struct in the list, put a zero value in the pointer to indicate that it’s the end. Write a second function that takes the head of your list and moves through to the end, printing out both the pointer value and the int value for each one.
  25. Repeat Exercise 24, but put the functions inside a struct instead of using “raw” structs and functions.



[33] This term can cause debate. Some people use it as defined here; others use it to describe access control, discussed in the following chapter.

[34] To write a function definition for a function that takes a true variable argument list, you must use varargs, although these should be avoided in C++. You can find details about the use of varargs in your C manual.

[35] However, in Standard C++ file static is a deprecated feature.

Home   |   Web Faq   |   Radio Online   |   About   |   Products   |   Webmaster Login

The quality software developer.™
© 2003-2004 ruben|labs corp. All Rights Reserved.
Timp de generare a paginii: 17583 secunde
Versiune site: 1.8 SP3 (build 2305-rtm.88542-10.2004)