Am avut 371690 vizite de la lansarea siteului.




Inapoi        Inainte       Cuprins

Overloadable operators

Although you can overload almost all the operators available in C, the use of operator overloading is fairly restrictive. In particular, you cannot combine operators that currently have no meaning in C (such as ** to represent exponentiation), you cannot change the evaluation precedence of operators, and you cannot change the number of arguments required by an operator. This makes sense – all of these actions would produce operators that confuse meaning rather than clarify it.

The next two subsections give examples of all the “regular” operators, overloaded in the form that you’ll most likely use.

Unary operators

The following example shows the syntax to overload all the unary operators, in the form of both global functions (non-member friend functions) and as member functions. These will expand upon the Integer class shown previously and add a new byte class. The meaning of your particular operators will depend on the way you want to use them, but consider the client programmer before doing something unexpected.

Here is a catalog of all the unary functions:

//: C12:OverloadingUnaryOperators.cpp
#include <iostream>
using namespace std;

// Non-member functions:
class Integer {
  long i;
  Integer* This() { return this; }
public:
  Integer(long ll = 0) : i(ll) {}
  // No side effects takes const& argument:
  friend const Integer&
    operator+(const Integer& a);
  friend const Integer
    operator-(const Integer& a);
  friend const Integer
    operator~(const Integer& a);
  friend Integer*
    operator&(Integer& a);
  friend int
    operator!(const Integer& a);
  // Side effects have non-const& argument:
  // Prefix:
  friend const Integer&
    operator++(Integer& a);
  // Postfix:
  friend const Integer
    operator++(Integer& a, int);
  // Prefix:
  friend const Integer&
    operator--(Integer& a);
  // Postfix:
  friend const Integer
    operator--(Integer& a, int);
};

// Global operators:
const Integer& operator+(const Integer& a) {
  cout << "+Integer\n";
  return a; // Unary + has no effect
}
const Integer operator-(const Integer& a) {
  cout << "-Integer\n";
  return Integer(-a.i);
}
const Integer operator~(const Integer& a) {
  cout << "~Integer\n";
  return Integer(~a.i);
}
Integer* operator&(Integer& a) {
  cout << "&Integer\n";
  return a.This(); // &a is recursive!
}
int operator!(const Integer& a) {
  cout << "!Integer\n";
  return !a.i;
}
// Prefix; return incremented value
const Integer& operator++(Integer& a) {
  cout << "++Integer\n";
  a.i++;
  return a;
}
// Postfix; return the value before increment:
const Integer operator++(Integer& a, int) {
  cout << "Integer++\n";
  Integer before(a.i);
  a.i++;
  return before;
}
// Prefix; return decremented value
const Integer& operator--(Integer& a) {
  cout << "--Integer\n";
  a.i--;
  return a;
}
// Postfix; return the value before decrement:
const Integer operator--(Integer& a, int) {
  cout << "Integer--\n";
  Integer before(a.i);
  a.i--;
  return before;
}

// Show that the overloaded operators work:
void f(Integer a) {
  +a;
  -a;
  ~a;
  Integer* ip = &a;
  !a;
  ++a;
  a++;
  --a;
  a--;
}

// Member functions (implicit "this"):
class Byte {
  unsigned char b;
public:
  Byte(unsigned char bb = 0) : b(bb) {}
  // No side effects: const member function:
  const Byte& operator+() const {
    cout << "+Byte\n";
    return *this;
  }
  const Byte operator-() const {
    cout << "-Byte\n";
    return Byte(-b);
  }
  const Byte operator~() const {
    cout << "~Byte\n";
    return Byte(~b);
  }
  Byte operator!() const {
    cout << "!Byte\n";
    return Byte(!b);
  }
  Byte* operator&() {
    cout << "&Byte\n";
    return this;
  }
  // Side effects: non-const member function:
  const Byte& operator++() { // Prefix
    cout << "++Byte\n";
    b++;
    return *this;
  }
  const Byte operator++(int) { // Postfix
    cout << "Byte++\n";
    Byte before(b);
    b++;
    return before;
  }
  const Byte& operator--() { // Prefix
    cout << "--Byte\n";
    --b;
    return *this;
  }
  const Byte operator--(int) { // Postfix
    cout << "Byte--\n";
    Byte before(b);
    --b;
    return before;
  }
};

void g(Byte b) {
  +b;
  -b;
  ~b;
  Byte* bp = &b;
  !b;
  ++b;
  b++;
  --b;
  b--;
}

int main() {
  Integer a;
  f(a);
  Byte b;
  g(b);
} ///:~

The functions are grouped according to the way their arguments are passed. Guidelines for how to pass and return arguments are given later. The forms above (and the ones that follow in the next section) are typically what you’ll use, so start with them as a pattern when overloading your own operators.

Increment & decrement

The overloaded ++ and – – operators present a dilemma because you want to be able to call different functions depending on whether they appear before (prefix) or after (postfix) the object they’re acting upon. The solution is simple, but people sometimes find it a bit confusing at first. When the compiler sees, for example, ++a (a pre-increment), it generates a call to operator++(a); but when it sees a++, it generates a call to operator++(a, int). That is, the compiler differentiates between the two forms by making calls to different overloaded functions. In OverloadingUnaryOperators.cpp for the member function versions, if the compiler sees ++b, it generates a call to B::operator++( ); if it sees b++ it calls B::operator++(int).

All the user sees is that a different function gets called for the prefix and postfix versions. Underneath, however, the two functions calls have different signatures, so they link to two different function bodies. The compiler passes a dummy constant value for the int argument (which is never given an identifier because the value is never used) to generate the different signature for the postfix version.

Binary operators

The following listing repeats the example of OverloadingUnaryOperators.cpp for binary operators so you have an example of all the operators you might want to overload. Again, both global versions and member function versions are shown.

//: C12:Integer.h
// Non-member overloaded operators
#ifndef INTEGER_H
#define INTEGER_H
#include <iostream>

// Non-member functions:
class Integer { 
  long i;
public:
  Integer(long ll = 0) : i(ll) {}
  // Operators that create new, modified value:
  friend const Integer
    operator+(const Integer& left,
              const Integer& right);
  friend const Integer
    operator-(const Integer& left,
              const Integer& right);
  friend const Integer
    operator*(const Integer& left,
              const Integer& right);
  friend const Integer
    operator/(const Integer& left,
              const Integer& right);
  friend const Integer
    operator%(const Integer& left,
              const Integer& right);
  friend const Integer
    operator^(const Integer& left,
              const Integer& right);
  friend const Integer
    operator&(const Integer& left,
              const Integer& right);
  friend const Integer
    operator|(const Integer& left,
              const Integer& right);
  friend const Integer
    operator<<(const Integer& left,
               const Integer& right);
  friend const Integer
    operator>>(const Integer& left,
               const Integer& right);
  // Assignments modify & return lvalue:
  friend Integer&
    operator+=(Integer& left,
               const Integer& right);
  friend Integer&
    operator-=(Integer& left,
               const Integer& right);
  friend Integer&
    operator*=(Integer& left,
               const Integer& right);
  friend Integer&
    operator/=(Integer& left,
               const Integer& right);
  friend Integer&
    operator%=(Integer& left,
               const Integer& right);
  friend Integer&
    operator^=(Integer& left,
               const Integer& right);
  friend Integer&
    operator&=(Integer& left,
               const Integer& right);
  friend Integer&
    operator|=(Integer& left,
               const Integer& right);
  friend Integer&
    operator>>=(Integer& left,
                const Integer& right);
  friend Integer&
    operator<<=(Integer& left,
                const Integer& right);
  // Conditional operators return true/false:
  friend int
    operator==(const Integer& left,
               const Integer& right);
  friend int
    operator!=(const Integer& left,
               const Integer& right);
  friend int
    operator<(const Integer& left,
              const Integer& right);
  friend int
    operator>(const Integer& left,
              const Integer& right);
  friend int
    operator<=(const Integer& left,
               const Integer& right);
  friend int
    operator>=(const Integer& left,
               const Integer& right);
  friend int
    operator&&(const Integer& left,
               const Integer& right);
  friend int
    operator||(const Integer& left,
               const Integer& right);
  // Write the contents to an ostream:
  void print(std::ostream& os) const { os << i; }
}; 
#endif // INTEGER_H ///:~
//: C12:Integer.cpp {O}
// Implementation of overloaded operators
#include "Integer.h"
#include "../require.h"

const Integer
  operator+(const Integer& left,
            const Integer& right) {
  return Integer(left.i + right.i);
}
const Integer
  operator-(const Integer& left,
            const Integer& right) {
  return Integer(left.i - right.i);
}
const Integer
  operator*(const Integer& left,
            const Integer& right) {
  return Integer(left.i * right.i);
}
const Integer
  operator/(const Integer& left,
            const Integer& right) {
  require(right.i != 0, "divide by zero");
  return Integer(left.i / right.i);
}
const Integer
  operator%(const Integer& left,
            const Integer& right) {
  require(right.i != 0, "modulo by zero");
  return Integer(left.i % right.i);
}
const Integer
  operator^(const Integer& left,
            const Integer& right) {
  return Integer(left.i ^ right.i);
}
const Integer
  operator&(const Integer& left,
            const Integer& right) {
  return Integer(left.i & right.i);
}
const Integer
  operator|(const Integer& left,
            const Integer& right) {
  return Integer(left.i | right.i);
}
const Integer
  operator<<(const Integer& left,
             const Integer& right) {
  return Integer(left.i << right.i);
}
const Integer
  operator>>(const Integer& left,
             const Integer& right) {
  return Integer(left.i >> right.i);
}
// Assignments modify & return lvalue:
Integer& operator+=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i += right.i;
   return left;
}
Integer& operator-=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i -= right.i;
   return left;
}
Integer& operator*=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i *= right.i;
   return left;
}
Integer& operator/=(Integer& left,
                    const Integer& right) {
   require(right.i != 0, "divide by zero");
   if(&left == &right) {/* self-assignment */}
   left.i /= right.i;
   return left;
}
Integer& operator%=(Integer& left,
                    const Integer& right) {
   require(right.i != 0, "modulo by zero");
   if(&left == &right) {/* self-assignment */}
   left.i %= right.i;
   return left;
}
Integer& operator^=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i ^= right.i;
   return left;
}
Integer& operator&=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i &= right.i;
   return left;
}
Integer& operator|=(Integer& left,
                    const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i |= right.i;
   return left;
}
Integer& operator>>=(Integer& left,
                     const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i >>= right.i;
   return left;
}
Integer& operator<<=(Integer& left,
                     const Integer& right) {
   if(&left == &right) {/* self-assignment */}
   left.i <<= right.i;
   return left;
}
// Conditional operators return true/false:
int operator==(const Integer& left,
               const Integer& right) {
    return left.i == right.i;
}
int operator!=(const Integer& left,
               const Integer& right) {
    return left.i != right.i;
}
int operator<(const Integer& left,
              const Integer& right) {
    return left.i < right.i;
}
int operator>(const Integer& left,
              const Integer& right) {
    return left.i > right.i;
}
int operator<=(const Integer& left,
               const Integer& right) {
    return left.i <= right.i;
}
int operator>=(const Integer& left,
               const Integer& right) {
    return left.i >= right.i;
}
int operator&&(const Integer& left,
               const Integer& right) {
    return left.i && right.i;
}
int operator||(const Integer& left,
               const Integer& right) {
    return left.i || right.i;
} ///:~
//: C12:IntegerTest.cpp
//{L} Integer
#include "Integer.h"
#include <fstream>
using namespace std;
ofstream out("IntegerTest.out");

void h(Integer& c1, Integer& c2) {
  // A complex expression:
  c1 += c1 * c2 + c2 % c1;
  #define TRY(OP) \
    out << "c1 = "; c1.print(out); \
    out << ", c2 = "; c2.print(out); \
    out << ";  c1 " #OP " c2 produces "; \
    (c1 OP c2).print(out); \
    out << endl;
  TRY(+) TRY(-) TRY(*) TRY(/)
  TRY(%) TRY(^) TRY(&) TRY(|)
  TRY(<<) TRY(>>) TRY(+=) TRY(-=)
  TRY(*=) TRY(/=) TRY(%=) TRY(^=)
  TRY(&=) TRY(|=) TRY(>>=) TRY(<<=)
  // Conditionals:
  #define TRYC(OP) \
    out << "c1 = "; c1.print(out); \
    out << ", c2 = "; c2.print(out); \
    out << ";  c1 " #OP " c2 produces "; \
    out << (c1 OP c2); \
    out << endl;
  TRYC(<) TRYC(>) TRYC(==) TRYC(!=) TRYC(<=)
  TRYC(>=) TRYC(&&) TRYC(||)
} 

int main() {
  cout << "friend functions" << endl;
  Integer c1(47), c2(9);
  h(c1, c2);
} ///:~
//: C12:Byte.h
// Member overloaded operators
#ifndef BYTE_H
#define BYTE_H
#include "../require.h"
#include <iostream>
// Member functions (implicit "this"):
class Byte { 
  unsigned char b;
public:
  Byte(unsigned char bb = 0) : b(bb) {}
  // No side effects: const member function:
  const Byte
    operator+(const Byte& right) const {
    return Byte(b + right.b);
  }
  const Byte
    operator-(const Byte& right) const {
    return Byte(b - right.b);
  }
  const Byte
    operator*(const Byte& right) const {
    return Byte(b * right.b);
  }
  const Byte
    operator/(const Byte& right) const {
    require(right.b != 0, "divide by zero");
    return Byte(b / right.b);
  }
  const Byte
    operator%(const Byte& right) const {
    require(right.b != 0, "modulo by zero");
    return Byte(b % right.b);
  }
  const Byte
    operator^(const Byte& right) const {
    return Byte(b ^ right.b);
  }
  const Byte
    operator&(const Byte& right) const {
    return Byte(b & right.b);
  }
  const Byte
    operator|(const Byte& right) const {
    return Byte(b | right.b);
  }
  const Byte
    operator<<(const Byte& right) const {
    return Byte(b << right.b);
  }
  const Byte
    operator>>(const Byte& right) const {
    return Byte(b >> right.b);
  }
  // Assignments modify & return lvalue.
  // operator= can only be a member function:
  Byte& operator=(const Byte& right) {
    // Handle self-assignment:
    if(this == &right) return *this;
    b = right.b;
    return *this;
  }
  Byte& operator+=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b += right.b;
    return *this;
  }
  Byte& operator-=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b -= right.b;
    return *this;
  }
  Byte& operator*=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b *= right.b;
    return *this;
  }
  Byte& operator/=(const Byte& right) {
    require(right.b != 0, "divide by zero");
    if(this == &right) {/* self-assignment */}
    b /= right.b;
    return *this;
  }
  Byte& operator%=(const Byte& right) {
    require(right.b != 0, "modulo by zero");
    if(this == &right) {/* self-assignment */}
    b %= right.b;
    return *this;
  }
  Byte& operator^=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b ^= right.b;
    return *this;
  }
  Byte& operator&=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b &= right.b;
    return *this;
  }
  Byte& operator|=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b |= right.b;
    return *this;
  }
  Byte& operator>>=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b >>= right.b;
    return *this;
  }
  Byte& operator<<=(const Byte& right) {
    if(this == &right) {/* self-assignment */}
    b <<= right.b;
    return *this;
  }
  // Conditional operators return true/false:
  int operator==(const Byte& right) const {
      return b == right.b;
  }
  int operator!=(const Byte& right) const {
      return b != right.b;
  }
  int operator<(const Byte& right) const {
      return b < right.b;
  }
  int operator>(const Byte& right) const {
      return b > right.b;
  }
  int operator<=(const Byte& right) const {
      return b <= right.b;
  }
  int operator>=(const Byte& right) const {
      return b >= right.b;
  }
  int operator&&(const Byte& right) const {
      return b && right.b;
  }
  int operator||(const Byte& right) const {
      return b || right.b;
  }
  // Write the contents to an ostream:
  void print(std::ostream& os) const {
    os << "0x" << std::hex << int(b) << std::dec;
  }
}; 
#endif // BYTE_H ///:~
//: C12:ByteTest.cpp
#include "Byte.h"
#include <fstream>
using namespace std;
ofstream out("ByteTest.out");

void k(Byte& b1, Byte& b2) {
  b1 = b1 * b2 + b2 % b1;

  #define TRY2(OP) \
    out << "b1 = "; b1.print(out); \
    out << ", b2 = "; b2.print(out); \
    out << ";  b1 " #OP " b2 produces "; \
    (b1 OP b2).print(out); \
    out << endl;

  b1 = 9; b2 = 47;
  TRY2(+) TRY2(-) TRY2(*) TRY2(/)
  TRY2(%) TRY2(^) TRY2(&) TRY2(|)
  TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=)
  TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=)
  TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=)
  TRY2(=) // Assignment operator

  // Conditionals:
  #define TRYC2(OP) \
    out << "b1 = "; b1.print(out); \
    out << ", b2 = "; b2.print(out); \
    out << ";  b1 " #OP " b2 produces "; \
    out << (b1 OP b2); \
    out << endl;

  b1 = 9; b2 = 47;
  TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=)
  TRYC2(>=) TRYC2(&&) TRYC2(||)

  // Chained assignment:
  Byte b3 = 92;
  b1 = b2 = b3;
}

int main() {
  out << "member functions:" << endl;
  Byte b1(47), b2(9);
  k(b1, b2);
} ///:~

You can see that operator= is only allowed to be a member function. This is explained later.

Notice that all of the assignment operators have code to check for self-assignment; this is a general guideline. In some cases this is not necessary; for example, with operator+= you often want to say A+=A and have it add A to itself. The most important place to check for self-assignment is operator= because with complicated objects disastrous results may occur. (In some cases it’s OK, but you should always keep it in mind when writing operator=.)

All of the operators shown in the previous two examples are overloaded to handle a single type. It’s also possible to overload operators to handle mixed types, so you can add apples to oranges, for example. Before you start on an exhaustive overloading of operators, however, you should look at the section on automatic type conversion later in this chapter. Often, a type conversion in the right place can save you a lot of overloaded operators.

Home   |   Web Faq   |   Radio Online   |   About   |   Products   |   Webmaster Login

The quality software developer.™
© 2003-2004 ruben|labs corp. All Rights Reserved.
Timp de generare a paginii: 17583 secunde
Versiune site: 1.8 SP3 (build 2305-rtm.88542-10.2004)