Am avut 371675 vizite de la lansarea siteului.




Inapoi        Inainte       Cuprins


Extreme programming

I have studied analysis and design techniques, on and off, since I was in graduate school. The concept of Extreme Programming (XP) is the most radical, and delightful, that I’ve seen. You can find it chronicled in Extreme Programming Explained by Kent Beck (Addison-Wesley 2000) and on the Web at www.xprogramming.com.

XP is both a philosophy about programming work and a set of guidelines to do it. Some of these guidelines are reflected in other recent methodologies, but the two most important and distinct contributions, in my opinion, are “write tests first” and “pair programming.” Although he argues strongly for the whole process, Beck points out that if you adopt only these two practices you’ll greatly improve your productivity and reliability.

Write tests first

Testing has traditionally been relegated to the last part of a project, after you’ve “gotten everything working, but just to be sure.” It’s implicitly had a low priority, and people who specialize in it have not been given a lot of status and have often even been cordoned off in a basement, away from the “real programmers.” Test teams have responded in kind, going so far as to wear black clothing and cackling with glee whenever they broke something (to be honest, I’ve had this feeling myself when breaking C++ compilers).

XP completely revolutionizes the concept of testing by giving it equal (or even greater) priority than the code. In fact, you write the tests before you write the code that’s being tested, and the tests stay with the code forever. The tests must be executed successfully every time you do an integration of the project (which is often, sometimes more than once a day).

Writing tests first has two extremely important effects.

First, it forces a clear definition of the interface of a class. I’ve often suggested that people “imagine the perfect class to solve a particular problem” as a tool when trying to design the system. The XP testing strategy goes further than that – it specifies exactly what the class must look like, to the consumer of that class, and exactly how the class must behave. In no uncertain terms. You can write all the prose, or create all the diagrams you want describing how a class should behave and what it looks like, but nothing is as real as a set of tests. The former is a wish list, but the tests are a contract that is enforced by the compiler and the running program. It’s hard to imagine a more concrete description of a class than the tests.

While creating the tests, you are forced to completely think out the class and will often discover needed functionality that might be missed during the thought experiments of UML diagrams, CRC cards, use cases, etc.

The second important effect of writing the tests first comes from running the tests every time you do a build of your software. This activity gives you the other half of the testing that’s performed by the compiler. If you look at the evolution of programming languages from this perspective, you’ll see that the real improvements in the technology have actually revolved around testing. Assembly language checked only for syntax, but C imposed some semantic restrictions, and these prevented you from making certain types of mistakes. OOP languages impose even more semantic restrictions, which if you think about it are actually forms of testing. “Is this data type being used properly? Is this function being called properly?” are the kinds of tests that are being performed by the compiler or run-time system. We’ve seen the results of having these tests built into the language: people have been able to write more complex systems, and get them to work, with much less time and effort. I’ve puzzled over why this is, but now I realize it’s the tests: you do something wrong, and the safety net of the built-in tests tells you there’s a problem and points you to where it is.

But the built-in testing afforded by the design of the language can only go so far. At some point, you must step in and add the rest of the tests that produce a full suite (in cooperation with the compiler and run-time system) that verifies all of your program. And, just like having a compiler watching over your shoulder, wouldn’t you want these tests helping you right from the beginning? That’s why you write them first, and run them automatically with every build of your system. Your tests become an extension of the safety net provided by the language.

One of the things that I’ve discovered about the use of more and more powerful programming languages is that I am emboldened to try more brazen experiments, because I know that the language will keep me from wasting my time chasing bugs. The XP test scheme does the same thing for your entire project. Because you know your tests will always catch any problems that you introduce (and you regularly add any new tests as you think of them), you can make big changes when you need to without worrying that you’ll throw the whole project into complete disarray. This is incredibly powerful.


Pair programming

Pair programming goes against the rugged individualism that we’ve been indoctrinated into from the beginning, through school (where we succeed or fail on our own, and working with our neighbors is considered “cheating”) and media, especially Hollywood movies in which the hero is usually fighting against mindless conformity[19]. Programmers, too, are considered paragons of individuality – “cowboy coders” as Larry Constantine likes to say. And yet XP, which is itself battling against conventional thinking, says that code should be written with two people per workstation. And that this should be done in an area with a group of workstations, without the barriers that the facilities design people are so fond of. In fact, Beck says that the first task of converting to XP is to arrive with screwdrivers and Allen wrenches and take apart everything that gets in the way.[20] (This will require a manager who can deflect the ire of the facilities department.)

The value of pair programming is that one person is actually doing the coding while the other is thinking about it. The thinker keeps the big picture in mind, not only the picture of the problem at hand, but the guidelines of XP. If two people are working, it’s less likely that one of them will get away with saying, “I don’t want to write the tests first,” for example. And if the coder gets stuck, they can swap places. If both of them get stuck, their musings may be overheard by someone else in the work area who can contribute. Working in pairs keeps things flowing and on track. Probably more important, it makes programming a lot more social and fun.

I’ve begun using pair programming during the exercise periods in some of my seminars and it seems to significantly improve everyone’s experience.

Why C++ succeeds

Part of the reason C++ has been so successful is that the goal was not just to turn C into an OOP language (although it started that way), but also to solve many other problems facing developers today, especially those who have large investments in C. Traditionally, OOP languages have suffered from the attitude that you should abandon everything you know and start from scratch with a new set of concepts and a new syntax, arguing that it’s better in the long run to lose all the old baggage that comes with procedural languages. This may be true, in the long run. But in the short run, a lot of that baggage was valuable. The most valuable elements may not be the existing code base (which, given adequate tools, could be translated), but instead the existing mind base. If you’re a functioning C programmer and must drop everything you know about C in order to adopt a new language, you immediately become much less productive for many months, until your mind fits around the new paradigm. Whereas if you can leverage off of your existing C knowledge and expand on it, you can continue to be productive with what you already know while moving into the world of object-oriented programming. As everyone has his or her own mental model of programming, this move is messy enough as it is without the added expense of starting with a new language model from square one. So the reason for the success of C++, in a nutshell, is economic: It still costs to move to OOP, but C++ may cost less[21].

The goal of C++ is improved productivity. This productivity comes in many ways, but the language is designed to aid you as much as possible, while hindering you as little as possible with arbitrary rules or any requirement that you use a particular set of features. C++ is designed to be practical; C++ language design decisions were based on providing the maximum benefits to the programmer (at least, from the world view of C).

A better C

You get an instant win even if you continue to write C code because C++ has closed many holes in the C language and provides better type checking and compile-time analysis. You’re forced to declare functions so that the compiler can check their use. The need for the preprocessor has virtually been eliminated for value substitution and macros, which removes a set of difficult-to-find bugs. C++ has a feature called references that allows more convenient handling of addresses for function arguments and return values. The handling of names is improved through a feature called function overloading, which allows you to use the same name for different functions. A feature called namespaces also improves the control of names. There are numerous smaller features that improve the safety of C.

You’re already on the learning curve

The problem with learning a new language is productivity. No company can afford to suddenly lose a productive software engineer because he or she is learning a new language. C++ is an extension to C, not a complete new syntax and programming model. It allows you to continue creating useful code, applying the features gradually as you learn and understand them. This may be one of the most important reasons for the success of C++.

In addition, all of your existing C code is still viable in C++, but because the C++ compiler is pickier, you’ll often find hidden C errors when recompiling the code in C++.

Efficiency

Sometimes it is appropriate to trade execution speed for programmer productivity. A financial model, for example, may be useful for only a short period of time, so it’s more important to create the model rapidly than to execute it rapidly. However, most applications require some degree of efficiency, so C++ always errs on the side of greater efficiency. Because C programmers tend to be very efficiency-conscious, this is also a way to ensure that they won’t be able to argue that the language is too fat and slow. A number of features in C++ are intended to allow you to tune for performance when the generated code isn’t efficient enough.

Not only do you have the same low-level control as in C (and the ability to directly write assembly language within a C++ program), but anecdotal evidence suggests that the program speed for an object-oriented C++ program tends to be within ±10% of a program written in C, and often much closer[22]. The design produced for an OOP program may actually be more efficient than the C counterpart.

Systems are easier
to express and understand

Classes designed to fit the problem tend to express it better. This means that when you write the code, you’re describing your solution in the terms of the problem space (“Put the grommet in the bin”) rather than the terms of the computer, which is the solution space (“Set the bit in the chip that means that the relay will close”). You deal with higher-level concepts and can do much more with a single line of code.

The other benefit of this ease of expression is maintenance, which (if reports can be believed) takes a huge portion of the cost over a program’s lifetime. If a program is easier to understand, then it’s easier to maintain. This can also reduce the cost of creating and maintaining the documentation.

Maximal leverage with libraries

The fastest way to create a program is to use code that’s already written: a library. A major goal in C++ is to make library use easier. This is accomplished by casting libraries into new data types (classes), so that bringing in a library means adding new types to the language. Because the C++ compiler takes care of how the library is used – guaranteeing proper initialization and cleanup, and ensuring that functions are called properly – you can focus on what you want the library to do, not how you have to do it.

Because names can be sequestered to portions of your program via C++ namespaces, you can use as many libraries as you want without the kinds of name clashes you’d run into with C.

Source-code reuse with templates

There is a significant class of types that require source-code modification in order to reuse them effectively. The template feature in C++ performs the source code modification automatically, making it an especially powerful tool for reusing library code. A type that you design using templates will work effortlessly with many other types. Templates are especially nice because they hide the complexity of this kind of code reuse from the client programmer.

Error handling

Error handling in C is a notorious problem, and one that is often ignored – finger-crossing is usually involved. If you’re building a large, complex program, there’s nothing worse than having an error buried somewhere with no clue as to where it came from. C++ exception handling (introduced in this Volume, and fully covered in Volume 2, which is downloadable from www.BruceEckel.com) is a way to guarantee that an error is noticed and that something happens as a result.

Programming in the large

Many traditional languages have built-in limitations to program size and complexity. BASIC, for example, can be great for pulling together quick solutions for certain classes of problems, but if the program gets more than a few pages long or ventures out of the normal problem domain of that language, it’s like trying to swim through an ever-more viscous fluid. C, too, has these limitations. For example, when a program gets beyond perhaps 50,000 lines of code, name collisions start to become a problem – effectively, you run out of function and variable names. Another particularly bad problem is the little holes in the C language – errors buried in a large program can be extremely difficult to find.

There’s no clear line that tells you when your language is failing you, and even if there were, you’d ignore it. You don’t say, “My BASIC program just got too big; I’ll have to rewrite it in C!” Instead, you try to shoehorn a few more lines in to add that one new feature. So the extra costs come creeping up on you.

C++ is designed to aid programming in the large, that is, to erase those creeping-complexity boundaries between a small program and a large one. You certainly don’t need to use OOP, templates, namespaces, and exception handling when you’re writing a hello-world style utility program, but those features are there when you need them. And the compiler is aggressive about ferreting out bug-producing errors for small and large programs alike.


Strategies for transition

If you buy into OOP, your next question is probably, “How can I get my manager/colleagues/department/peers to start using objects?” Think about how you – one independent programmer – would go about learning to use a new language and a new programming paradigm. You’ve done it before. First comes education and examples; then comes a trial project to give you a feel for the basics without doing anything too confusing. Then comes a “real world” project that actually does something useful. Throughout your first projects you continue your education by reading, asking questions of experts, and trading hints with friends. This is the approach many experienced programmers suggest for the switch from C to C++. Switching an entire company will of course introduce certain group dynamics, but it will help at each step to remember how one person would do it.

Guidelines

Here are some guidelines to consider when making the transition to OOP and C++:

1. Training

The first step is some form of education. Remember the company’s investment in plain C code, and try not to throw everything into disarray for six to nine months while everyone puzzles over how multiple inheritance works. Pick a small group for indoctrination, preferably one composed of people who are curious, work well together, and can function as their own support network while they’re learning C++.

An alternative approach that is sometimes suggested is the education of all company levels at once, including overview courses for strategic managers as well as design and programming courses for project builders. This is especially good for smaller companies making fundamental shifts in the way they do things, or at the division level of larger companies. Because the cost is higher, however, some may choose to start with project-level training, do a pilot project (possibly with an outside mentor), and let the project team become the teachers for the rest of the company.

2. Low-risk project

Try a low-risk project first and allow for mistakes. Once you’ve gained some experience, you can either seed other projects from members of this first team or use the team members as an OOP technical support staff. This first project may not work right the first time, so it should not be mission-critical for the company. It should be simple, self-contained, and instructive; this means that it should involve creating classes that will be meaningful to the other programmers in the company when they get their turn to learn C++.

3. Model from success

Seek out examples of good object-oriented design before starting from scratch. There’s a good probability that someone has solved your problem already, and if they haven’t solved it exactly you can probably apply what you’ve learned about abstraction to modify an existing design to fit your needs. This is the general concept of design patterns, covered in Volume 2.

4. Use existing class libraries

The primary economic motivation for switching to OOP is the easy use of existing code in the form of class libraries (in particular, the Standard C++ libraries, which are covered in depth in Volume two of this book). The shortest application development cycle will result when you don’t have to write anything but main( ), creating and using objects from off-the-shelf libraries. However, some new programmers don’t understand this, are unaware of existing class libraries, or, through fascination with the language, desire to write classes that may already exist. Your success with OOP and C++ will be optimized if you make an effort to seek out and reuse other people’s code early in the transition process.

5. Don’t rewrite existing code in C++

Although compiling your C code with a C++ compiler usually produces (sometimes tremendous) benefits by finding problems in the old code, it is not usually the best use of your time to take existing, functional code and rewrite it in C++. (If you must turn it into objects, you can “wrap” the C code in C++ classes.) There are incremental benefits, especially if the code is slated for reuse. But chances are you aren’t going to see the dramatic increases in productivity that you hope for in your first few projects unless that project is a new one. C++ and OOP shine best when taking a project from concept to reality.


Management obstacles

If you’re a manager, your job is to acquire resources for your team, to overcome barriers to your team’s success, and in general to try to provide the most productive and enjoyable environment so your team is most likely to perform those miracles that are always being asked of you. Moving to C++ falls in all three of these categories, and it would be wonderful if it didn’t cost you anything as well. Although moving to C++ may be cheaper – depending on your constraints[23] – than the OOP alternatives for a team of C programmers (and probably for programmers in other procedural languages), it isn’t free, and there are obstacles you should be aware of before trying to sell the move to C++ within your company and embarking on the move itself.


Startup costs

The cost of moving to C++ is more than just the acquisition of C++ compilers (the GNU C++ compiler, one of the very best, is free). Your medium- and long-term costs will be minimized if you invest in training (and possibly mentoring for your first project) and also if you identify and purchase class libraries that solve your problem rather than trying to build those libraries yourself. These are hard-money costs that must be factored into a realistic proposal. In addition, there are the hidden costs in loss of productivity while learning a new language and possibly a new programming environment. Training and mentoring can certainly minimize these, but team members must overcome their own struggles to understand the new technology. During this process they will make more mistakes (this is a feature, because acknowledged mistakes are the fastest path to learning) and be less productive. Even then, with some types of programming problems, the right classes, and the right development environment, it’s possible to be more productive while you’re learning C++ (even considering that you’re making more mistakes and writing fewer lines of code per day) than if you’d stayed with C.


Performance issues

A common question is, “Doesn’t OOP automatically make my programs a lot bigger and slower?” The answer is, “It depends.” Most traditional OOP languages were designed with experimentation and rapid prototyping in mind rather than lean-and-mean operation. Thus, they virtually guaranteed a significant increase in size and decrease in speed. C++, however, is designed with production programming in mind. When your focus is on rapid prototyping, you can throw together components as fast as possible while ignoring efficiency issues. If you’re using any third party libraries, these are usually already optimized by their vendors; in any case it’s not an issue while you’re in rapid-development mode. When you have a system that you like, if it’s small and fast enough, then you’re done. If not, you begin tuning with a profiling tool, looking first for speedups that can be done with simple applications of built-in C++ features. If that doesn’t help, you look for modifications that can be made in the underlying implementation so no code that uses a particular class needs to be changed. Only if nothing else solves the problem do you need to change the design. The fact that performance is so critical in that portion of the design is an indicator that it must be part of the primary design criteria. You have the benefit of finding this out early using rapid development.

As mentioned earlier, the number that is most often given for the difference in size and speed between C and C++ is ±10%, and often much closer to par. You might even get a significant improvement in size and speed when using C++ rather than C because the design you make for C++ could be quite different from the one you’d make for C.

The evidence for size and speed comparisons between C and C++ tends to be anecdotal and is likely to remain so. Regardless of the number of people who suggest that a company try the same project using C and C++, no company is likely to waste money that way unless it’s very big and interested in such research projects. Even then, it seems like the money could be better spent. Almost universally, programmers who have moved from C (or some other procedural language) to C++ (or some other OOP language) have had the personal experience of a great acceleration in their programming productivity, and that’s the most compelling argument you can find.

Common design errors

When starting your team into OOP and C++, programmers will typically go through a series of common design errors. This often happens because of too little feedback from experts during the design and implementation of early projects, because no experts have been developed within the company and there may be resistance to retaining consultants. It’s easy to feel that you understand OOP too early in the cycle and go off on a bad tangent. Something that’s obvious to someone experienced with the language may be a subject of great internal debate for a novice. Much of this trauma can be skipped by using an experienced outside expert for training and mentoring.

On the other hand, the fact that it is easy to make these design errors points to C++’s main drawback: its backward compatibility with C (of course, that’s also its main strength). To accomplish the feat of being able to compile C code, the language had to make some compromises, which have resulted in a number of “dark corners.” These are a reality, and comprise much of the learning curve for the language. In this book and the subsequent volume (and in other books; see Appendix C), I try to reveal most of the pitfalls you are likely to encounter when working with C++. You should always be aware that there are some holes in the safety net.

Summary

This chapter attempts to give you a feel for the broad issues of object-oriented programming and C++, including why OOP is different, and why C++ in particular is different, concepts of OOP methodologies, and finally the kinds of issues you will encounter when moving your own company to OOP and C++.

OOP and C++ may not be for everyone. It’s important to evaluate your own needs and decide whether C++ will optimally satisfy those needs, or if you might be better off with another programming system (including the one you’re currently using). If you know that your needs will be very specialized for the foreseeable future and if you have specific constraints that may not be satisfied by C++, then you owe it to yourself to investigate the alternatives[24]. Even if you eventually choose C++ as your language, you’ll at least understand what the options were and have a clear vision of why you took that direction.

You know what a procedural program looks like: data definitions and function calls. To find the meaning of such a program you have to work a little, looking through the function calls and low-level concepts to create a model in your mind. This is the reason we need intermediate representations when designing procedural programs – by themselves, these programs tend to be confusing because the terms of expression are oriented more toward the computer than to the problem you’re solving.

Because C++ adds many new concepts to the C language, your natural assumption may be that the main( ) in a C++ program will be far more complicated than for the equivalent C program. Here, you’ll be pleasantly surprised: A well-written C++ program is generally far simpler and much easier to understand than the equivalent C program. What you’ll see are the definitions of the objects that represent concepts in your problem space (rather than the issues of the computer representation) and messages sent to those objects to represent the activities in that space. One of the delights of object-oriented programming is that, with a well-designed program, it’s easy to understand the code by reading it. Usually there’s a lot less code, as well, because many of your problems will be solved by reusing existing library code.


2: Making & Using Objects

[4] See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley 1995).

[5] You can find an interesting implementation of this problem in Volume 2 of this book, available at www.BruceEckel.com.

[6] Some people make a distinction, stating that type determines the interface while class is a particular implementation of that interface.

[7] I’m indebted to my friend Scott Meyers for this term.

[8] This is usually enough detail for most diagrams, and you don’t need to get specific about whether you’re using aggregation or composition.

[9] An excellent example of this is UML Distilled, by Martin Fowler (Addison-Wesley 2000), which reduces the sometimes-overwhelming UML process to a manageable subset.

[10] My rule of thumb for estimating such projects: If there’s more than one wild card, don’t even try to plan how long it’s going to take or how much it will cost until you’ve created a working prototype. There are too many degrees of freedom.

[11] Thanks for help from James H Jarrett.

[12] More information on use cases can be found in Applying Use Cases by Schneider & Winters (Addison-Wesley 1998) and Use Case Driven Object Modeling with UML by Rosenberg (Addison-Wesley 1999).

[13] My personal take on this has changed lately. Doubling and adding 10 percent will give you a reasonably accurate estimate (assuming there are not too many wild-card factors), but you still have to work quite diligently to finish in that time. If you want time to really make it elegant and to enjoy yourself in the process, the correct multiplier is more like three or four times, I believe.

[14] For starters, I recommend the aforementioned UML Distilled.

[15] Python (www.Python.org) is often used as “executable pseudocode.”

[16] At least one aspect of evolution is covered in Martin Fowler’s book Refactoring: improving the design of existing code (Addison-Wesley 1999). Be forewarned that this book uses Java examples exclusively.

[17] This term is explored in the Design Patterns chapter in Volume 2.

[18] This is something like “rapid prototyping,” where you were supposed to build a quick-and-dirty version so that you could learn about the system, and then throw away your prototype and build it right. The trouble with rapid prototyping is that people didn’t throw away the prototype, but instead built upon it. Combined with the lack of structure in procedural programming, this often produced messy systems that were expensive to maintain.

[19] Although this may be a more American perspective, the stories of Hollywood reach everywhere.

[20] Including (especially) the PA system. I once worked in a company that insisted on broadcasting every phone call that arrived for every executive, and it constantly interrupted our productivity (but the managers couldn’t begin to conceive of stifling such an important service as the PA). Finally, when no one was looking I started snipping speaker wires.

[21] I say “may” because, due to the complexity of C++, it might actually be cheaper to move to Java. But the decision of which language to choose has many factors, and in this book I’ll assume that you’ve chosen C++.

[22] However, look at Dan Saks’ columns in the C/C++ User’s Journal for some important investigations into C++ library performance.

[23] Because of its productivity improvements, the Java language should also be considered here.

[24] In particular, I recommend looking at Java (http://java.sun.com) and Python (http://www.Python.org).

Home   |   Web Faq   |   Radio Online   |   About   |   Products   |   Webmaster Login

The quality software developer.™
© 2003-2004 ruben|labs corp. All Rights Reserved.
Timp de generare a paginii: 17583 secunde
Versiune site: 1.8 SP3 (build 2305-rtm.88542-10.2004)